webentwicklung-frage-antwort-db.com.de

Was sind alle möglichen Pos-Tags von NLTK?

Wie finde ich eine Liste mit allen möglichen pos-Tags, die vom Natural Language Toolkit (nltk) verwendet werden?

113
OrangeTux

Das Buch enthält einen Hinweis, wie Sie Hilfe zu Tag-Sets finden, z. B .:

nltk.help.upenn_tagset()

Andere sind wahrscheinlich ähnlich. (Hinweis: Möglicherweise müssen Sie zuerst tagsets aus dem Bereich Models des Download-Helpers herunterladen.)

132
phg

Um einigen Leuten etwas Zeit zu sparen, hier eine Liste, die ich aus einem kleinen Korpus extrahiert habe. Ich weiß nicht, ob es vollständig ist, aber es sollte die meisten (wenn nicht alle) Hilfedefinitionen von upenn_tagset haben ...

CC: Konjunktion, Koordinierung

& 'n and both but either et for less minus neither nor or plus so
therefore times v. versus vs. whether yet

CD: Zahl, Kardinal

mid-1890 nine-thirty forty-two one-tenth ten million 0.5 one forty-
seven 1987 twenty '79 zero two 78-degrees eighty-four IX '60s .025
fifteen 271,124 dozen quintillion DM2,000 ...

DT: Bestimmer

all an another any both del each either every half la many much nary
neither no some such that the them these this those

EX: dort existentiell

there

IN: Präposition oder Konjunktion, untergeordnet

astride among uppon whether out inside pro despite on by throughout
below within for towards near behind atop around if like until below
next into if beside ...

JJ: Adjektiv oder Ziffer, Ordinalzahl

third ill-mannered pre-war regrettable oiled calamitous first separable
ectoplasmic battery-powered participatory fourth still-to-be-named
multilingual multi-disciplinary ...

JJR: Adjektiv, vergleichend

bleaker braver breezier briefer brighter brisker broader bumper busier
calmer cheaper choosier cleaner clearer closer colder commoner costlier
cozier creamier crunchier cuter ...

JJS: Adjektiv, Superlativ

calmest cheapest choicest classiest cleanest clearest closest commonest
corniest costliest crassest creepiest crudest cutest darkest deadliest
dearest deepest densest dinkiest ...

LS: Listenelementmarkierung

A A. B B. C C. D E F First G H I J K One SP-44001 SP-44002 SP-44005
SP-44007 Second Third Three Two * a b c d first five four one six three
two

MD: Modalhilfsmittel

can cannot could couldn't dare may might must need ought shall should
shouldn't will would

NN: Substantiv, allgemein, singulär oder Masse

common-carrier cabbage knuckle-duster Casino afghan shed thermostat
investment slide humour falloff slick wind hyena override subhumanity
machinist ...

NNP: Substantiv, eigentümlich, Singular

Motown Venneboerger Czestochwa Ranzer Conchita Trumplane Christos
Oceanside Escobar Kreisler Sawyer Cougar Yvette Ervin ODI Darryl CTCA
Shannon A.K.C. Meltex Liverpool ...

NNS: Substantiv, allgemein, Plural

undergraduates scotches bric-a-brac products bodyguards facets coasts
divestitures storehouses designs clubs fragrances averages
subjectivists apprehensions muses factory-jobs ...

PDT: Vorbestimmer

all both half many quite such sure this

POS: Genitivmarker

' 's

PRP: Pronomen, persönlich

hers herself him himself hisself it itself me myself one oneself ours
ourselves ownself self she thee theirs them themselves they thou thy us

PRP$: Pronomen, Possessiv

her his mine my our ours their thy your

RB: Adverb

occasionally unabatingly maddeningly adventurously professedly
stirringly prominently technologically magisterially predominately
swiftly fiscally pitilessly ...

RBR: Adverb, vergleichend

further gloomier grander graver greater grimmer harder harsher
healthier heavier higher however larger later leaner lengthier less-
perfectly lesser lonelier longer louder lower more ...

RBS: Adverb, Superlativ

best biggest bluntest earliest farthest first furthest hardest
heartiest highest largest least less most nearest second tightest worst

RP: Partikel

aboard about across along apart around aside at away back before behind
by crop down ever fast for forth from go high i.e. in into just later
low more off on open out over per pie raising start teeth that through
under unto up up-pp upon whole with you

BIS: "bis" als Präposition oder Infinitivmarker

to

UH: Interjektion

Goodbye Goody Gosh Wow Jeepers Jee-sus Hubba Hey Kee-reist Oops amen
huh howdy uh dammit whammo shucks heck anyways whodunnit honey golly
man baby diddle hush sonuvabitch ...

VB: Verb, Basisform

ask assemble assess assign assume atone attention avoid bake balkanize
bank begin behold believe bend benefit bevel beware bless boil bomb
boost brace break bring broil brush build ...

VBD: Verb, Vergangenheitsform

dipped pleaded swiped regummed soaked tidied convened halted registered
cushioned exacted snubbed strode aimed adopted belied figgered
speculated wore appreciated contemplated ...

VBG: Verb, Partizip oder Gerund

telegraphing stirring focusing angering judging stalling lactating
hankerin' alleging veering capping approaching traveling besieging
encrypting interrupting erasing wincing ...

VBN: Verb, Partizip Perfekt

multihulled dilapidated aerosolized chaired languished panelized used
experimented flourished imitated reunifed factored condensed sheared
unsettled primed dubbed desired ...

VBP: Verb, Präsens, nicht 3. Person Singular

predominate wrap resort sue twist spill cure lengthen brush terminate
appear tend stray glisten obtain comprise detest tease attract
emphasize mold postpone sever return wag ...

VBZ: Verb, Präsens, 3. Person Singular

bases reconstructs marks mixes displeases seals carps weaves snatches
slumps stretches authorizes smolders pictures emerges stockpiles
seduces fizzes uses bolsters slaps speaks pleads ...

WDT: WH-Bestimmung

that what whatever which whichever

WP: WH-Pronomen

that what whatever whatsoever which who whom whosoever

WRB: Wh-Adverb

how however whence whenever where whereby whereever wherein whereof why
100
binarymax

Der Tag-Satz hängt vom Korpus ab, der zum Trainieren des Taggers verwendet wurde. Der Standard-Tagger von nltk.pos_tag() verwendet den Penn Treebank Tag Set

In NLTK 2 können Sie wie folgt überprüfen, welcher Tagger der Standard-Tagger ist: 

import nltk
nltk.tag._POS_TAGGER
>>> 'taggers/maxent_treebank_pos_tagger/english.pickle'

Dies bedeutet, dass es sich um einen Maximum Entropy-Tagger handelt, der auf dem Treebank-Corpus trainiert wird. 

nltk.tag._POS_TAGGER ist in NLTK 3 nicht mehr vorhanden, aber der Dokumentation zufolge dass der handelsübliche Tagger noch das Penn-Treebank-Tagset verwendet. 

57
Suzana

Das Folgende kann nützlich sein, um auf ein Diktat zuzugreifen, das durch Abkürzungen eingegeben wird:

>>> from nltk.data import load
>>> tagdict = load('help/tagsets/upenn_tagset.pickle')
>>> tagdict['NN'][0]
'noun, common, singular or mass'
>>> tagdict.keys()
['PRP$', 'VBG', 'VBD', '``', 'VBN', ',', "''", 'VBP', 'WDT', ...
27
Doug Shore

Die Referenz finden Sie auf der offiziellen Seite

Kopieren und Einfügen von dort:

  • CC | Koordinierende Konjunktion |
  • CD | Hauptzahl |
  • DT | Determiner |
  • EX | Existenzielle dort |
  • FW | Fremdwort |
  • IN | Präposition oder untergeordnete Konjunktion |
  • JJ | Adjektiv |
  • JJR | Adjektiv, vergleichend |
  • JJS | Adjektiv, Superlativ |
  • LS | Artikelmarkierung auflisten |
  • MD | Modal |
  • NN | Substantiv, Singular oder Masse |
  • NNS | Substantiv, Plural |
  • NNP | Eigenes Nomen, Singular |
  • NNPS | Eigenname, Plural |
  • PDT | Predeterminer |
  • POS | Possessives Ende |
  • PRP | Personalpronomen |
  • PRP $ | Possessivpronomen |
  • RB | Adverb |
  • RBR | Adverb, vergleichende |
  • RBS | Adverb, Superlativ |
  • RP | Partikel |
  • SYM | Symbol |
  • TO | zu |
  • UH | Interjektion |
  • VB | Verb, Grundform |
  • VBD | Verb, Vergangenheit |
  • VBG | Verb, Gerund oder Partizip |
  • VBN | Verb, Partizip Perfekt |
  • VBP | Verb, Nicht-3. Person Singular anwesend |
  • VBZ | Verb, 3. Person singular anwesend |
  • WDT | Wh-Determinator |
  • WP | Wh-Pronomen |
  • WP $ | Possessives wh-Pronomen |
  • WRB | Wh-Adverb |
22
mdubez

Sie können die Liste hier herunterladen: ftp://ftp.cis.upenn.edu/pub/treebank/doc/tagguide.ps.gz . Dies beinhaltet verwirrende Teile der Sprache, Kapitalisierung und andere Konventionen. wikipedia hat auch einen interessanten Abschnitt ähnlich diesem. Abschnitt: Teilweise verwendete Stichworte. 

0
phanindravarma